
Tutorial 9: Skeletal Animation

Summary

In the last couple of tutorials, you’ve seen how to create a scene graph, and implemented a simple
animating ’cube robot’ using them. You’re probably wondering how to get from simple animating
characters like the cube robot, to the more advanced animating meshes seen in modern computer
games. This tutorial will show you the theory behind skeletal animation, a way of realistically ani-
mating a mesh using a data structure similar to the scene graphs you’ve been using. You’ll also see
an implementation of skeletal animation, using a model from a commercial video game.

New Concepts

Skeletal Animation, skeletal joints, joint weights, quaternions

Skeletal Meshes

Modern video game characters area usually rendered by the movement of an underlying skeleton of
joints, controlled by data loaded in from an animation file. This makes them much easier to control,
and capable of much more interesting movement than the ’hard coded’ animations we used for the
CubeRobot.

Joints

The skeleton used to animate a skeletal mesh is made up of a number of joints. Each of these joints
has a transformation consisting of a position and a rotation, and may have a parent joint its transform
is in relation to. Sound familiar? Each joint is essentially the same thing as a scene node - if you look
at the introduction image, you’ll even spot a transition joint - just like our CubeRobot, some skeletal
animation meshes will have a node at the local origin to aid in model placement.

The joints used in meshes don’t necessarily directly replicate how ’real’ joints are used in a human
skeleton. In a game, a character’s face might also be made up of joints - the sides of the mouth might
be joints which can moved by an animation to make their lips move when talking. If you’ve ever
seen a highly detailed game character who turned their eyes towards you, they did so due to having
their eyeballs connected to ’joints’ ! Joints might also be used as ’attachment’ points - for example a
character holding a weapon in a game probably does so because the weapon mesh has been attached
to a joint in the character’s hand.

1

Skinning

If joints are just the same as scene nodes, then how exactly is skeletal animation better than the
primitive animation we achieved with the CubeRobot? The problem with scene node animation is
that every vertex is drawn in relation to only a single point of reference - the scene node itself.
However, in skeletal animation, it is common to use a process known as vertex skinning, where each
vertex position is built up from a number of points of references. This is useful for joints which
rotate by a large amount. Take the elbow, for example. Image we wanted to build up a human model,
complete with fully poseable arms. If we tried to simulate the elbow joint, we’d end up with something
like this:

Example of vertex skinning. Middle image shows the overlaps and gaps that appear when rotating
separate meshes, while right image shows how this can be avoided by using a single mesh and using

multiple frames of reference for vertices (in this case v0 and v1)

If we animated this elbow joint, we’d end up with a ’hole’ in the elbow - not very realistic! We
could try to fill that hole by making the forearm joint area bigger, but we’d still end up with overlap-
ping geometry, which if textured, would create an odd effect, like the clothing on the arm was actually
disappearing inside the arm as the joint was rotated.

So instead, we have a single mesh for the entire arm (or even the entire model), which has each
vertex drawn in relation to multiple frames of reference. There are two variations on using these
points of references:

1) Each vertex has a position, and a number of joints the position is relative to.

2) Each vertex is relative to a number of ’anchoring’ points, each of which has a position and a
single joint it is relative to.

Weights

No matter which variation is used, the final position of the vertex is determined by its position in
relation to a number of reference points. How much influence each reference point has on the final
vertex position is determined by its weighting. Each vertex has a weight value for each reference point,
which together add up to 1.0. These weight values are then used to scale the result of transforming
an initial vertex position by a joint’s transformation matrix.

position =
∑

(t · v) · w

The final vertex position is formed by summing the results of multiplying each joint transform t by
either the vertex or weight position v, scaled by multiplying by joint weight value w

2

Here’s some examples to show how a vertices’ position is calculated using its reference points.

Firstly, here’s an example using direct joint weightings. v0 is drawn in reference to joints j0 and
j1 equally, while v1 is drawn in relation to j1 and j2, with j2 having more influence. In both cases
the vertices local position is used, which in the case of v1, places it slightly further to the right than
either of the joints it is weighted to.

Direct vertex weightings

When using weighted anchor points, the final position is determined entirely by the weighting
between the anchor weight positions. In this example, v0 has two weight anchors - w0 and w1, each
with equal influence. This means that v0 will end up exactly in the mid point between the joint-
transformed positions of w0 and w1.

Weighted anchor positions

Bind Pose

When a mesh is bound to its underlying skeleton (a process known as rigging) it is usually placed
into a bind pose. For bipedal meshes, such as humans, or the HellKnight used in these examples, the
bind pose is to have the mesh’s legs slightly apart, and its arms out to either side. This is to make it
easier to access individual vertices when modelling, and also to place the mesh in a fully ’stretched’
state, making it easier to weight each vertex to the correct joints. When loading in a skeletal mesh,
if no animation is applied to it, it will most likely be in this initial bind pose state.

An example of a skeletal mesh and its underlying skeleton in its bind pose - note that the root node is
transitional, and is between the character’s feet to aid in placement

3

Animating Skeletal Meshes

Like the scene nodes you have been introduced to, each joint in a skeletal mesh may have a parent.
The joint’s position and orientation will always be in relation to that parent joint, so animating a
skeletal mesh is simply a case of moving the skeleton joints to the desired orientation and position
according to data loaded in from an animation file, and then reskinning the mesh in this new position.
Like cartoons or movies, a skeletal mesh animation generally has a set number of frames per second.
So if an animation has an internal frame rate of 24 frames a second, the mesh skeleton should be
moved and the mesh reskinned every 24th of a second.

Using the framerate independence functionality you’ve already learned about, updating a mesh by a
specific framerate should be easy but it’s possible to go one step further, and create even smoother
animations. If an example joint j has a transformation t1 in the first frame of animation, and a
transformation of t2 in the second, it follows that at the time period between frames, the actual
transformation of the joint will be somewhere between t1 and t2. Like the interpolation of vertex
attributes, it’s possible to interpolate smoothly between two frames of animation.

It’s possible to go one step further than that, too. If one animation only animates the legs, say a
running animation, it’s possible to add another animation on top for the other joints - so there can
be a separate ’running’ animation and ’weapon reloading’ animation that can be blended together,
without having to create a ’running while reloading’ animation for every weapon a character can hold.

Hardware Skinning

Joints are just transformation matrices, and weights are just floats and positions, so it is possible for
skeletal mesh skinning to be performed on the graphics card, in a vertex shader. In fact doing so will
probably be beneficial to the framerate of the application, as graphics hardware is faster at processing
floating point calculations than the CPU, and the vertex data for the mesh to be skinned is probably
in graphics memory anyway.

There are a variety of ways to store the skeletal transformation data on the graphics card - it
could be sent as a large uniform array, or written as a texture and accessed via texture sampling.
However the data stored and accessed from the graphics card, the vertices of the skeletal mesh will
require more attributes. Depending on the variation of vertex skinning, these attributes may be a set
of anchor positions and their weighting values and joint index, or maybe simply pairs of index values
and weighting value. In either case, the vertex shader will require every joint’s transformation, passed
as a single large uniform array of matrices.

Due to how vertex attributes work, each vertex is required to have the same amount of data.
But what if one vertex is influenced by one joint, and another by 4? Or 100? Generally, vertices
to be transformed by hardware skinning are limited to being influenced by a low number of joints,
commonly 4 or 8. Each vertex would then have 4/8 vertex skinning attributes, with weightings of 0.0
used for unused joint influence ’slots’. Similarly, there is a limit on the size of uniform data sent to
the vertex shader, placing an upper limit on the number of joints that can be hardware skinned in
a vertex shader via the uniforms you are used to using. For example, some hardware is limited to
256 vertex shader registers - that means only 256 vec4s can be sent to a vertex shader (remember,
graphics hardware always works on 4 component vectors!). So that would place a hard limit of 64
joints sent to a vertex shader - 64 joint matrices · 4 vec4s per matrix = 256. Now, the 4th row of
a joint matrix isn’t really used - it’ll always be (0,0,0,1). So we can cheat a little and reconstruct a
joint’s transformation matrix from 3 vec4s - now we can have 85 joints! However, there is a way of
being able to send even more joints to a vertex shader as uniforms. A joints transformation matrix
is made up of 1 vec4 for position, and a 3 by 3 matrix for rotation. There is a way of being able to
’compress’ that rotation matrix into only 4 values, giving us enough space for 128 joints - quaternions.

4

Quaternions

Any orientation in 3D space can be represented by an axis, and an angle of rotation around that axis
- think of a vector pointing in a direction, with a twist. A quaternion consists of four coefficients
(x, y, z, w) which are calculated as:

(x, y, z, w) = (sin a / 2 * Vx, sin a / 2 * Vy, sin a / 2 * Vz, cos a / 2)

Where a is the angle of rotation around the axis (Vx, Vy, Vz).

Three dimensional orientation could also be represented by the use of three Euler angles (pitch,
yaw and roll), which at first sight seems more efficient on memory, and may seem more intuitive
to you. However, combining Euler angles is computationally expensive (trigonometry is not cheap!),
and will also lead to gimbal lock (a situation where multiple axis’ of a rotation point the same way,
effectively removing a degree of freedom from further rotations). Working with quaternions resolves
these disadvantages.

A quaternion can be thought of as an axis, and an angle of rotation around that axis

There are well-established algorithms for turning a quaternion into a rotation matrix, and vice versa
the maths is pretty straightforward. Also, combining a series of rotations which are represented as
quaternions is just a matter of multiplying the quaternions together (again the maths is straightfor-
ward and involves nothing more expensive that multiplications). Graphics libraries typically include
optimised functions for working with quaternions.

So, we can keep the rotation as a quaternion, and reconstruct it in the vertex shader to a matrix,
and set the joint’s position as the translation matrix, giving us more joints at the cost of greater
computation in reconstructing the matrix.


qx
qy
qz
qw

 =

 1 − 2 · q2y − 2 · q2z 2 · qx · qy − 2 · qz · qw 2 · qx · qz + 2 · qy · qw
2 · qx · qy + 2 · qz · qw 1 − 2 · q2x − 2 · q2z 2 · qy · qz − 2 · qx · qw
2 · qx · qz − 2 · qy · qw 2 · qy · qz + 2 · qx · qw 1 − 2 · q2x − 2 · q2y


How to turn a quaternion q into a 3 by 3 rotation matrix

5

Example Program

To demonstrate skeletal animation, you’re going to create an application that will load in and an-
imate a mesh - a HellKnight from id Software’s Doom 3. The Doom 3 engine supports skeletal
animation via the MD5 format, a well documented, plain text file format. This program will load
in the HellKnight’s vertices from an MD5Mesh file, and an example animation from an MD5Anim file.

The example program for this tutorial is a little bit different, in that you aren’t going to be writing
the code for the skeletal animation - the code for loading in the MD5Mesh and MD5Anim file formats
is just too tedious and error prone! Instead, we’re going to add a few provided classes to the nclgl
project, and take a look at how they implement the important parts of skeletal animation. The classes
you’ll be adding are fully commented though, so there’s plenty to learn by looking through them!

There are 4 new classes involved in getting an animated MD5 mesh on screen - MD5FileData
and MD5Anim load and store the structures described in an MD5 animated character’s files, while
MD5Node and MD5Mesh are subclasses of the SceneNode and Mesh classes you made earlier in the
tutorial series.

Class structure, and the relationships between each other and the classes you have already created

In the ./nclgl/ folder, you should find the class and header files for MD5FileData, MD5Anim,
MD5Node, and MD5Mesh - add all the files to your nclgl static library project. The reason they
area hidden away instead of being already in there is that the MD5 model format uses vertex indices
extensively, and so the code quite simply would not compile until you programmed support for indices
last tutorial!

MD5Node

Due to the space they take up, we don’t really want multiple copies of the same MD5 mesh in memory
- instead we’re going to have only one, and then skin that one mesh into the correct pose for however
many copies of that mesh we want in our game’s world. In order to have multiple characters, all
with their own animation and current skinned frame, we’re going to derive a new subclass from the
SceneNode class we created earlier. In it, we’re going to have an instance of a special skeleton data
structure, a reference to an MD5FileData, a pointer to the currently playing animation (if any), as
well as an unsigned int to store the current animation frame, and a float to keep track of when to
update the skeleton.

6

We also need some functions in our new node class - a PlayAnim function to set which animation
the character should play, as well as overridden Update and Draw functions. That’s all we need in
order to control skeletal animation - most of the ’difficult’ stuff will happen in our other classes.

1 class MD5Node : public SceneNode {

2 public:

3 MD5Node(const MD5FileData &ofType);

4 ~MD5Node(void);

5

6 virtual void Update(float msec);

7 virtual void Draw(const OGLRenderer &r);

8

9 void PlayAnim(std:: string name); //Play a new anim!

10

11 protected:

12 const MD5FileData& sourceData;

13 MD5Skeleton currentSkeleton;

14 MD5Anim* currentAnim;

15

16 float frameTime;

17 unsigned int currentAnimFrame; // Current frame of animation

18 };

MD5Node.h

The Update and Draw functions are very simple - Update will advance the current frame of an-
imation according to how much time has passed since the last Update, and transform the skeleton
accordingly. Draw will skin the mesh data to the correct pose for this MD5Node, and then draw it
using the parent Mesh class Draw function.

19 void MD5Node :: Update(float msec) {

20 if(currentAnim && awake) {

21 frameTime -= msec;

22

23 while(frameTime < 0) {

24 frameTime += 1000.0f / currentAnim ->GetFrameRate ();

25 currentAnimFrame =

26 currentAnimFrame ++%(currentAnim ->GetNumFrames ());

27 }

28

29 currentAnim ->TransformSkeleton(

30 currentSkeleton ,currentAnimFrame -1);

31 }

32

33 SceneNode :: Update(msec);

34 }

35

36 void MD5Node ::Draw(const OGLRenderer &r) {

37 MD5Mesh*m = (MD5Mesh *)mesh;

38 m->SkinVertices(currentSkeleton);

39 Mesh::Draw ();

40 }

MD5Node.h

7

MD5Mesh

As described earlier, it is common to make the weighting amount and index information a vertex
attribute. However, this data is quite specific information to skeletal animation, so there’s not much
point making it ’generic’ vertex information inside our Mesh class - most meshes won’t ever use it! So
instead we subclass Mesh, and store a new OpenGL name for our vertex attribute data, and a pointer
to the data itself. Our existing BufferData function won’t touch this, so we make a new function,
BufferExtraData, to handle the uploading of the vertex weighting into graphics memory. Finally, as
we’re going to be actually modifying the vertex data on the graphics card every time the mesh is
reskinned into a new pose, which we’ll handle with the RebufferData function.

1 class MD5Mesh : public Mesh , public ChildMeshInterface {

2 public:

3 MD5Mesh(const MD5FileData&type);

4 ~MD5Mesh(void);

5

6 virtual void Draw ();

7 void SkinVertices(const MD5Skeleton &skel);

8

9 protected:

10 void RebufferData ();

11 void BufferExtraData ();

12

13 Vector2* weights;

14 GLuint weightObject;

15

16 const MD5FileData & type;

17 };

MD5Mesh.h

Implementing MD5 skeletal mesh animation

The MD5 mesh format is a pretty straightforward implementation of skeletal animation, using the
’weights with anchor positions’ variation. It has a skeleton made up of a list of joints, starting from
the ’root’ joint, stored as structs, like this:

1 struct MD5Joint {

2 int parent; // parent joint (0 for root)

3 Vector3 position; // position of this joint

4 Quaternion orientation; // orientation of this joint

5 Matrix4 transform; // world transform for this joint

6 };

7

8 struct MD5Skeleton {

9 int numJoints; //How many joints does this skeleton have?

10 MD5Joint* joints; //Heap memory for numJoints MD5Joints

11 };

MD5FileData.h

8

It also has a list of weights, each of which has a position, weighting value, and a reference to
the joint it is tied to. The vertices for an MD5 are stored as follows - note how they only have tex-
ture coordinate attributes, as they have their final position built up via a number of weighted anchors.

12 struct MD5Weight {

13 int weightIndex; // index of weight from 0 - n

14 int jointIndex; // reference to joint

15 float weightValue; // weighting value between 0.0 and 1.0

16 Vector3 position; // position relative to joint

17 };

18

19 struct MD5Vert {

20 int vertIndex; // index of vertex from 0 - n

21 Vector2 texCoords; //uv map coordinates for vert

22 int weightElements; // number of weights that affect vert

23 int weightIndex; // index of the first weight

24 };

MD5FileData.h

MD5Anim Class

Each MD5 animation has a ’base frame’ - a set of starting transforms for the joints in the mesh,
similar to the ’bind pose’ of the mesh itself. Each frame of the animation consists of a list of values
representing the differences between the baseframe’s transform and the transforms required for the
current frame. This is a specific feature of the MD5 format, rather than of ’skeletal animation’ in
general, so other formats may not do this.

Creating the skeleton for an animation frame is really simple - it’s just the same as the scene node
transforms you are used to! The root node is transformed by the frame’s transform, and then its
children, and so on, in such a way as any node’s parent node has already been transformed to that
frame’s position and orientation. So to create the world transform of any joint is simply a case of
multiplying the joint’s local transform by the world transform of its parent.

1 For each joint {

2 Generate local joint transform from frame transform

3

4 if joint is root {

5 Set joint transform

6 }

7 else{

8 Multiply local joint transform by parent joint transform

9 Set joint transform

10 }

11 }

MD5Anim TransformSkeleton Pseudocode

MD5Mesh Class

The MD5Mesh class handles the skinning of a mesh’s vertices from a skeleton transformed by an
animation frame. This is done through the MD5Mesh member function SkinVertices, which has a
reference to some skeleton data as a parameter, created from an animation frame.

9

1 for each vertex {

2 vertex.texCoords = mesh.texCoords[vertex] // Direct Copy!

3 vertex.position = Vector3 (0,0,0) //Made up of weightings ...

4

5 for each vertex.weightElements {

6 weight = mesh.weights[vertex.weightIndex + current weightElement]

7 joint = skeleton.joints[weight.jointIndex]

8

9 vertex.position += (joint.transform * weight.position)

10 * weight.weightValue;

11 }

12 }

13 RebufferData ()

MD5Mesh SkinVertices Pseudocode

So how is mesh data ’rebuffered’? Fortunately, this is quite simple. It’s the same way as how data
is buffered, but instead of calling the OpenGL API function glBufferData, we use glBufferSub-
Data. This function copies a chunk of system memory to graphics memory, but unlike glBufferData,
does not allocate any new memory, it just reuses the memory allocated for the VBO by a prior call
to glBufferData, which always allocates new memory. Using glBufferData, you would effectively
get a ’memory leak’ within your graphics card memory, constantly allocating a new frame’s worth of
vertex attributes. As you can probably imagine, that quickly turns into rather a lot of data!

1 void MD5Mesh :: RebufferData () {

2 glBindBuffer(GL_ARRAY_BUFFER , bufferObject[VERTEX_BUFFER]);

3 glBufferSubData(GL_ARRAY_BUFFER , 0, numVertices*sizeof(Vector3),

4 (void*) vertices);

5

6 if(textureCoords) {

7 glBindBuffer(GL_ARRAY_BUFFER , bufferObject[TEXTURE_BUFFER]);

8 glBufferSubData(GL_ARRAY_BUFFER , 0, numVertices*sizeof(Vector2),

9 (void*) textureCoords);

10 }

11 if (colours) {

12 glBindBuffer(GL_ARRAY_BUFFER , bufferObject[COLOUR_BUFFER]);

13 glBufferSubData(GL_ARRAY_BUFFER , 0, numVertices*sizeof(Vector4),

14 (void*) colours);

15 }

16 if(indices) {

17 glBindBuffer(GL_ELEMENT_ARRAY_BUFFER ,bufferObject[INDEX_BUFFER]);

18 glBufferSubData(GL_ELEMENT_ARRAY_BUFFER , 0,

19 numVertices*sizeof(unsigned int), (void*) indices);

20 }

21 //A sneak preview of the lighting tutorials (definately not a mistake)

22 if(normals) {

23 glBindBuffer(GL_ARRAY_BUFFER , bufferObject[NORMAL_BUFFER]);

24 glBufferSubData(GL_ARRAY_BUFFER , 0, numVertices*sizeof(Vector3),

25 (void*) normals);

26 }

27 if(tangents) {

28 glBindBuffer(GL_ARRAY_BUFFER , bufferObject[TANGENT_BUFFER]);

29 glBufferSubData(GL_ARRAY_BUFFER , 0, numVertices*sizeof(Vector3),

30 (void*) tangents);

31 }

32 }

MD5Mesh.cpp

10

Renderer Class

To demonstrate how to use the MD5 skeletal animation classes, we’re going to create a quick scene -
just a camera pointing at an instance of the provided HellKnight mesh, as it runs through an anima-
tion. So in the Renderer class header, we need a pointer to an MD5FileData class, an MD5Node to
control the HellKnight, and a Camera instance, and overloads for RenderScene and UpdateScene.

1 #pragma once

2

3 #include "./ NCLGL/OGLRenderer.h"

4 #include "./ NCLGL/Camera.h"

5 #include "./ NCLGL/MD5Mesh.h"

6

7 class Renderer : public OGLRenderer {

8 public:

9 Renderer(Window &parent);

10 virtual ~Renderer(void);

11 virtual void RenderScene ();

12 virtual void UpdateScene(float msec);

13 protected:

14 MD5FileData* hellData;

15 MD5Node* hellNode;

16 Camera* camera;

17 };

Renderer.h

We don’t need a new shader, the simple TexturedVertex and TexturedFragment programs from
Tutorial 3 will do just fine. On line 7, we load in some data from an MD5 file into an MD5FileData
class, then on line 8, we create a new MD5Node to control the file data. Each MD5 can have a number
of animations, each loaded in from an MD5Anim file - the AddAnim function on line 14 will add the
animations from such a file to a map within the MD5FileData instance. This animation can then
be played by using the PlayAnim function of an MD5Node, passing in the name of the animation to
play.

1 #include "Renderer.h"

2 Renderer :: Renderer(Window &parent) : OGLRenderer(parent) {

3 camera = new Camera (0 ,90.0f,Vector3 (-180 ,60 ,0));

4 currentShader = new Shader(SHADERDIR"TexturedVertex.glsl",

5 SHADERDIR"TexturedFragment.glsl");

6

7 hellData = new MD5FileData(MESHDIR"hellknight.md5mesh");

8 hellNode = new MD5Node (* hellData);

9

10 if(! currentShader ->LinkProgram ()) {

11 return;

12 }

13

14 hellData ->AddAnim(MESHDIR"idle2.md5anim");

15 hellNode ->PlayAnim(MESHDIR"idle2.md5anim");

16

17 projMatrix = Matrix4 :: Perspective (1.0f ,10000.0f,

18 (float)width / (float)height , 45.0f);

19

20 glEnable(GL_DEPTH_TEST);

21 init = true;

22 }

Renderer.cpp

11

As ever, everything we create on the heap in the Renderer constructor must be deleted in the
Renderer destructor.

23 Renderer ::~ Renderer(void) {

24 delete camera;

25 delete hellData;

26 delete hellNode;

27 }

Renderer.cpp

In UpdateScene, along with the camera updating and view matrix construction, we must update
our MD5Mesh instance, by calling UpdateAnim, passing the msec value to it as a parameter. This
works out the next frame to generate a skeleton for, and skins its vertices with the resulting trans-
formed skeleton.

28 void Renderer :: UpdateScene(float msec) {

29 camera ->UpdateCamera(msec);

30 viewMatrix = camera ->BuildViewMatrix ();

31 hellNode ->Update(msec);

32 }

Renderer.cpp

Other than the call to UpdateAnim, we don’t actually need any new code, so RenderScene should
look very familiar to you. You can use the function DrawSkeleton if you want to see the skeleton
joints and bones instead of the actual mesh.

33 void Renderer :: RenderScene () {

34 glClear(GL_DEPTH_BUFFER_BIT | GL_COLOR_BUFFER_BIT);

35

36 glUseProgram(currentShader ->GetProgram ());

37

38 glUniform1i(glGetUniformLocation(currentShader ->GetProgram (),

39 "diffuseTex"), 0);

40

41 UpdateShaderMatrices ();

42

43 hellNode ->Draw(*this);

44

45 glUseProgram (0);

46 SwapBuffers ();

47 }

Renderer.cpp

Tutorial Summary

On running the program, you should see the HellKnight looping through an ’idle’ animation, looking
from side to side. No matter what framerate your application gets, the UpdateAnim function ensures
that the animations proceed at the correct speed. Skeletal animation is the de facto standard way for
complex characters to be animated in games, often with multiple blended animations. Skeletal anima-
tion with vertex skinning allows characters to move realistically, and with fewer graphical anomalies
than a simple scene node transformations. Beyond the actual animating of characters, joints are
useful for attaching in-game items to a mesh - joints will often have name strings, allowing them to
be easily referenced by in-game scripting tools. There’s not actually that much to skeletal animation
and skinning, it’s just a simple variation on the scene graph hierarchy you are now used to - correctly
loading in the file formats is trickier than actually animating them (take a look at the file loading
code, and then be very happy its been done for you!).

12

Further Work

1) Investigate the sourcecode for the MD5Mesh, MD5FileData and MD5Anim classes. Beyond the
actual skinning and skeletal animation functions, they should provide an insight into how meshes and
animations are stored in a triple-A title, and how to load them in using the STL.

2) Earlier it was mentioned that skeletal animation skinning could be performed on the graphics
card. Investigate how to send a transformed skeleton’s transformation matrices to a vertex shader.
What about vertex attributes, how would you use those to send weights to the graphics card? Assume
no vertex is influenced by more than 4 weights.

3) Investigate Texture Buffer Objects, and Uniform Buffer Objects - two methods of stor-
ing arbitrary data in graphics memory. Could they be used to perform vertex skinning? What might
the advantages and disadvantages of these methods be?

4) Despite the various ways of storing data on the graphics card, some developers still keep the
skeletal transform data as a simple texture in graphics memory. Can you think of any advantage to
doing this? Hint: This method generally doesn’t use nearest-neighbour sampling.

13

